Liquid–liquid phase separation during amphiphilic self-assembly
نویسندگان
چکیده
منابع مشابه
Features and Methods of Making Nanofibers by Electrospinning, Phase Separation and Self-assembly
One of the major challenges in the field of tissue engineering is the production of scaffolding in nano-scale. The study of structural-functional connections in pathological and normal tissues with biologically active alternatives or engineered materials has been developed. Extracellular Matrix (ECM) is a suitable environment consisting of gelatin, elastin and collagen types I, II and III, etc....
متن کاملHierarchically Ordered Self‐Assembly of Amphiphilic Bifullerenes
A series of novel functionalised dumbbell-shaped bifullerenes in which two [5.0] pentakis-adducts of C60 are covalently connected by cyclic bismalonates were synthesised. These dimeric compounds, carrying various combinations of hydrophilic and hydrophobic addends, self-assemble in aqueous solution towards supramolecular architectures of different structural complexity as observed by cryogenic ...
متن کاملCoarse-grained simulation of amphiphilic self-assembly.
The authors present a computer simulation study of amphiphilic self-assembly performed using a computationally efficient single-site model based on Gay-Berne [J. Chem. Phys. 74, 3316 (1981)] and Lennard-Jones particles. Molecular dynamics simulations of these systems show that free self-assembly of micellar, bilayer, and inverse micelle arrangements can be readily achieved for a single model pa...
متن کاملExploiting non-equilibrium phase separation for self-assembly.
Demixing can occur in systems of two or more particle species that experience different driving forces, e.g., mixtures of self-propelled active particles or of oppositely charged colloids subject to an electric field. Here we show with macroscopic experiments and computer simulations that the forces underlying such non-equilibrium segregation can be used to control the self-assembly of particle...
متن کاملPhase separation and rotor self-assembly in active particle suspensions.
Adding a nonadsorbing polymer to passive colloids induces an attraction between the particles via the "depletion" mechanism. High enough polymer concentrations lead to phase separation. We combine experiments, theory, and simulations to demonstrate that using active colloids (such as motile bacteria) dramatically changes the physics of such mixtures. First, significantly stronger interparticle ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Chemistry
سال: 2019
ISSN: 1755-4330,1755-4349
DOI: 10.1038/s41557-019-0210-4